Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Movie Box office Prediction via Joint Actor Representations and Social Media Sentiment (2006.13417v1)

Published 24 Jun 2020 in cs.SI and cs.IR

Abstract: In recent years, driven by the Asian film industry, such as China and India, the global box office has maintained a steady growth trend. Previous studies have rarely used long-term, full-sample film data in analysis, lack of research on actors' social networks. Existing film box office prediction algorithms only use film meta-data, lack of using social network characteristics and the model is less interpretable. I propose a FC-GRU-CNN binary classification model in of box office prediction task, combining five characteristics, including the film meta-data, Sina Weibo text sentiment, actors' social network measurement, all pairs shortest path and actors' art contribution. Exploiting long-term memory ability of GRU layer in long sequences and the mapping ability of CNN layer in retrieving all pairs shortest path matrix features, proposed model is 14% higher in accuracy than the current best C-LSTM model.

Citations (2)

Summary

We haven't generated a summary for this paper yet.