Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Could you guess an interesting movie from the posters?: An evaluation of vision-based features on movie poster database (1704.02199v1)

Published 7 Apr 2017 in cs.CV

Abstract: In this paper, we aim to estimate the Winner of world-wide film festival from the exhibited movie poster. The task is an extremely challenging because the estimation must be done with only an exhibited movie poster, without any film ratings and box-office takings. In order to tackle this problem, we have created a new database which is consist of all movie posters included in the four biggest film festivals. The movie poster database (MPDB) contains historic movies over 80 years which are nominated a movie award at each year. We apply a couple of feature types, namely hand-craft, mid-level and deep feature to extract various information from a movie poster. Our experiments showed suggestive knowledge, for example, the Academy award estimation can be better rate with a color feature and a facial emotion feature generally performs good rate on the MPDB. The paper may suggest a possibility of modeling human taste for a movie recommendation.

Citations (7)

Summary

We haven't generated a summary for this paper yet.