Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

StRDAN: Synthetic-to-Real Domain Adaptation Network for Vehicle Re-Identification (2004.12032v2)

Published 25 Apr 2020 in cs.CV, cs.LG, and eess.IV

Abstract: Vehicle re-identification aims to obtain the same vehicles from vehicle images. This is challenging but essential for analyzing and predicting traffic flow in the city. Although deep learning methods have achieved enormous progress for this task, their large data requirement is a critical shortcoming. Therefore, we propose a synthetic-to-real domain adaptation network (StRDAN) framework, which can be trained with inexpensive large-scale synthetic and real data to improve performance. The StRDAN training method combines domain adaptation and semi-supervised learning methods and their associated losses. StRDAN offers significant improvement over the baseline model, which can only be trained using real data, for VeRi and CityFlow-ReID datasets, achieving 3.1% and 12.9% improved mean average precision, respectively.

Citations (32)

Summary

We haven't generated a summary for this paper yet.