Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Strong Baseline for Vehicle Re-Identification (2104.10850v1)

Published 22 Apr 2021 in cs.CV

Abstract: Vehicle Re-Identification (Re-ID) aims to identify the same vehicle across different cameras, hence plays an important role in modern traffic management systems. The technical challenges require the algorithms must be robust in different views, resolution, occlusion and illumination conditions. In this paper, we first analyze the main factors hindering the Vehicle Re-ID performance. We then present our solutions, specifically targeting the dataset Track 2 of the 5th AI City Challenge, including (1) reducing the domain gap between real and synthetic data, (2) network modification by stacking multi heads with attention mechanism, (3) adaptive loss weight adjustment. Our method achieves 61.34% mAP on the private CityFlow testset without using external dataset or pseudo labeling, and outperforms all previous works at 87.1% mAP on the Veri benchmark. The code is available at https://github.com/cybercore-co-ltd/track2_aicity_2021.

Citations (30)

Summary

We haven't generated a summary for this paper yet.