Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 218 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Derived gluing construction of chiral algebras (2004.10055v1)

Published 21 Apr 2020 in math.QA

Abstract: We discuss the gluing construction of class $\mathcal{S}$ chiral algebras in derived setting. The gluing construction in non-derived setting was introduced by Arakawa to construct a family of vertex algebras of which the associated varieties give genus zero Moore-Tachikawa symplectic varieties. Motivated by the higher genus case, we introduce a dg vertex algebra version $\mathsf{MT}{\mathrm{ch}}$ of the category of Moore-Tachikawa symplectic varieties, where a morphism is given by a dg vertex algebra equipped with action of the universal affine vertex algebra, and composition of morphisms is given by the BRST reduction. We also show that the procedure taking the associated scheme of gives a functor from $\mathsf{MT}{\mathrm{ch}}$ to the category $\mathsf{MT}$ of derived Moore-Tachikawa varieties, which would imply compatibility of gluing constructions in both categories.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.