Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 97 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 36 tok/s
GPT-5 High 34 tok/s Pro
GPT-4o 91 tok/s
GPT OSS 120B 462 tok/s Pro
Kimi K2 217 tok/s Pro
2000 character limit reached

Chiral algebras of class $\mathcal{S}$ and Moore-Tachikawa symplectic varieties (1811.01577v2)

Published 5 Nov 2018 in math.RT, hep-th, and math.QA

Abstract: We give a functorial construction of the genus zero chiral algebras of class $\mathcal{S}$, that is, the vertex algebras corresponding to the theory of class $\mathcal{S}$ associated with genus zero pointed Riemann surfaces via the 4d/2d duality discovered by Beem, Lemos, Liendo, Peelaers, Rastelli and van Rees in physics. We show that there is a unique family of vertex algebras satisfying the required conditions and show that they are all simple and conformal. In fact, our construction works for any complex semisimple group G that is not necessarily simply laced. Furthermore, we show that the associated varieties of these vertex algebras are exactly the genus zero Moore-Tachikawa symplectic varieties that have been recently constructed by Braverman, Finkelberg and Nakajima using the geometry of the affine Grassmannian for the Langlands dual group.

Citations (21)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)