Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 97 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 36 tok/s
GPT-5 High 34 tok/s Pro
GPT-4o 91 tok/s
GPT OSS 120B 462 tok/s Pro
Kimi K2 217 tok/s Pro
2000 character limit reached

Twisted chiral algebras of class $\mathcal{S}$ and mixed Feigin-Frenkel gluing (2201.13435v1)

Published 31 Jan 2022 in hep-th, math.QA, and math.RT

Abstract: The correspondence between four-dimensional $\mathcal{N}=2$ superconformal field theories and vertex operator algebras, when applied to theories of class $\mathcal{S}$, leads to a rich family of VOAs that have been given the monicker chiral algebras of class $\mathcal{S}$. A remarkably uniform construction of these vertex operator algebras has been put forward by Tomoyuki Arakawa in arXiv:1811.01577. The construction of arXiv:1811.01577 takes as input a choice of simple Lie algebra $\mathfrak{g}$, and applies equally well regardless of whether $\mathfrak{g}$ is simply laced or not. In the non-simply laced case, however, the resulting VOAs do not correspond in any clear way to known four-dimensional theories. On the other hand, the standard realisation of class $\mathcal S$ theories involving non-simply laced symmetry algebras requires the inclusion of outer automorphism twist lines, and this requires a further development of the approach of arXiv:1811.01577. In this paper, we give an account of those further developments and propose definitions of most chiral algebras of class $\mathcal S$ with outer automorphism twist lines. We show that our definition passes some consistency checks and point out some important open problems.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.