2000 character limit reached
Learning Geometric Word Meta-Embeddings (2004.09219v1)
Published 20 Apr 2020 in cs.CL, cs.LG, and stat.ML
Abstract: We propose a geometric framework for learning meta-embeddings of words from different embedding sources. Our framework transforms the embeddings into a common latent space, where, for example, simple averaging of different embeddings (of a given word) is more amenable. The proposed latent space arises from two particular geometric transformations - the orthogonal rotations and the Mahalanobis metric scaling. Empirical results on several word similarity and word analogy benchmarks illustrate the efficacy of the proposed framework.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.