Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Multilingual Word Embeddings in Latent Metric Space: A Geometric Approach (1808.08773v3)

Published 27 Aug 2018 in cs.LG, cs.AI, cs.CL, and stat.ML

Abstract: We propose a novel geometric approach for learning bilingual mappings given monolingual embeddings and a bilingual dictionary. Our approach decouples learning the transformation from the source language to the target language into (a) learning rotations for language-specific embeddings to align them to a common space, and (b) learning a similarity metric in the common space to model similarities between the embeddings. We model the bilingual mapping problem as an optimization problem on smooth Riemannian manifolds. We show that our approach outperforms previous approaches on the bilingual lexicon induction and cross-lingual word similarity tasks. We also generalize our framework to represent multiple languages in a common latent space. In particular, the latent space representations for several languages are learned jointly, given bilingual dictionaries for multiple language pairs. We illustrate the effectiveness of joint learning for multiple languages in zero-shot word translation setting. Our implementation is available at https://github.com/anoopkunchukuttan/geomm .

Citations (76)

Summary

We haven't generated a summary for this paper yet.