Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
38 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Meta-Embeddings by Using Ensembles of Embedding Sets (1508.04257v2)

Published 18 Aug 2015 in cs.CL

Abstract: Word embeddings -- distributed representations of words -- in deep learning are beneficial for many tasks in NLP. However, different embedding sets vary greatly in quality and characteristics of the captured semantics. Instead of relying on a more advanced algorithm for embedding learning, this paper proposes an ensemble approach of combining different public embedding sets with the aim of learning meta-embeddings. Experiments on word similarity and analogy tasks and on part-of-speech tagging show better performance of meta-embeddings compared to individual embedding sets. One advantage of meta-embeddings is the increased vocabulary coverage. We will release our meta-embeddings publicly.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Wenpeng Yin (69 papers)
  2. Hinrich Schütze (250 papers)
Citations (29)