Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Milking CowMask for Semi-Supervised Image Classification (2003.12022v3)

Published 26 Mar 2020 in cs.CV

Abstract: Consistency regularization is a technique for semi-supervised learning that underlies a number of strong results for classification with few labeled data. It works by encouraging a learned model to be robust to perturbations on unlabeled data. Here, we present a novel mask-based augmentation method called CowMask. Using it to provide perturbations for semi-supervised consistency regularization, we achieve a state-of-the-art result on ImageNet with 10% labeled data, with a top-5 error of 8.76% and top-1 error of 26.06%. Moreover, we do so with a method that is much simpler than many alternatives. We further investigate the behavior of CowMask for semi-supervised learning by running many smaller scale experiments on the SVHN, CIFAR-10 and CIFAR-100 data sets, where we achieve results competitive with the state of the art, indicating that CowMask is widely applicable. We open source our code at https://github.com/google-research/google-research/tree/master/milking_cowmask

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Geoff French (3 papers)
  2. Avital Oliver (9 papers)
  3. Tim Salimans (46 papers)
Citations (48)