Papers
Topics
Authors
Recent
2000 character limit reached

Handling the Positive-Definite Constraint in the Bayesian Learning Rule

Published 24 Feb 2020 in stat.ML and cs.LG | (2002.10060v13)

Abstract: The Bayesian learning rule is a natural-gradient variational inference method, which not only contains many existing learning algorithms as special cases but also enables the design of new algorithms. Unfortunately, when variational parameters lie in an open constraint set, the rule may not satisfy the constraint and requires line-searches which could slow down the algorithm. In this work, we address this issue for positive-definite constraints by proposing an improved rule that naturally handles the constraints. Our modification is obtained by using Riemannian gradient methods, and is valid when the approximation attains a \emph{block-coordinate natural parameterization} (e.g., Gaussian distributions and their mixtures). We propose a principled way to derive Riemannian gradients and retractions from scratch. Our method outperforms existing methods without any significant increase in computation. Our work makes it easier to apply the rule in the presence of positive-definite constraints in parameter spaces.

Citations (30)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.