Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fast and Simple Natural-Gradient Variational Inference with Mixture of Exponential-family Approximations (1906.02914v3)

Published 7 Jun 2019 in stat.ML and cs.LG

Abstract: Natural-gradient methods enable fast and simple algorithms for variational inference, but due to computational difficulties, their use is mostly limited to \emph{minimal} exponential-family (EF) approximations. In this paper, we extend their application to estimate \emph{structured} approximations such as mixtures of EF distributions. Such approximations can fit complex, multimodal posterior distributions and are generally more accurate than unimodal EF approximations. By using a \emph{minimal conditional-EF} representation of such approximations, we derive simple natural-gradient updates. Our empirical results demonstrate a faster convergence of our natural-gradient method compared to black-box gradient-based methods with reparameterization gradients. Our work expands the scope of natural gradients for Bayesian inference and makes them more widely applicable than before.

Citations (62)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com