Papers
Topics
Authors
Recent
2000 character limit reached

The Lie-Group Bayesian Learning Rule

Published 8 Mar 2023 in cs.LG and stat.ML | (2303.04397v1)

Abstract: The Bayesian Learning Rule provides a framework for generic algorithm design but can be difficult to use for three reasons. First, it requires a specific parameterization of exponential family. Second, it uses gradients which can be difficult to compute. Third, its update may not always stay on the manifold. We address these difficulties by proposing an extension based on Lie-groups where posteriors are parametrized through transformations of an arbitrary base distribution and updated via the group's exponential map. This simplifies all three difficulties for many cases, providing flexible parametrizations through group's action, simple gradient computation through reparameterization, and updates that always stay on the manifold. We use the new learning rule to derive a new algorithm for deep learning with desirable biologically-plausible attributes to learn sparse features. Our work opens a new frontier for the design of new algorithms by exploiting Lie-group structures.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 10 likes about this paper.