Papers
Topics
Authors
Recent
2000 character limit reached

Automated Machine Learning can Classify Bound Entangled States with Tomograms

Published 22 Jan 2020 in quant-ph | (2001.08118v3)

Abstract: For quantum systems with a total dimension greater than six, the positive partial transposition (PPT) criterion is sufficient but not necessary to decide the non-separability of quantum states. Here, we present an Automated Machine Learning approach to classify random states of two qutrits as separable or entangled using enough data to perform a quantum state tomography, without any direct measurement of its entanglement. We could successfully apply our framework even when the Peres-Horodecki criterion fails. In addition, we could also estimate the Generalized Robustness of Entanglement with regression techniques and use it to validate our classifiers.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.