Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Separability-Entanglement Classifier via Machine Learning (1705.01523v3)

Published 3 May 2017 in quant-ph

Abstract: The problem of determining whether a given quantum state is entangled lies at the heart of quantum information processing, which is known to be an NP-hard problem in general. Despite the proposed many methods such as the positive partial transpose (PPT) criterion and the k-symmetric extendibility criterion to tackle this problem in practice, none of them enables a general, effective solution to the problem even for small dimensions. Explicitly, separable states form a high-dimensional convex set, which exhibits a vastly complicated structure. In this work, we build a new separability-entanglement classifier underpinned by machine learning techniques. Our method outperforms the existing methods in generic cases in terms of both speed and accuracy, opening up the avenues to explore quantum entanglement via the machine learning approach.

Summary

We haven't generated a summary for this paper yet.