Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Large-Scale Quantum Separability Through a Reproducible Machine Learning Lens (2306.09444v2)

Published 15 Jun 2023 in quant-ph, cs.LG, and stat.ML

Abstract: The quantum separability problem consists in deciding whether a bipartite density matrix is entangled or separable. In this work, we propose a machine learning pipeline for finding approximate solutions for this NP-hard problem in large-scale scenarios. We provide an efficient Frank-Wolfe-based algorithm to approximately seek the nearest separable density matrix and derive a systematic way for labeling density matrices as separable or entangled, allowing us to treat quantum separability as a classification problem. Our method is applicable to any two-qudit mixed states. Numerical experiments with quantum states of 3- and 7-dimensional qudits validate the efficiency of the proposed procedure, and demonstrate that it scales up to thousands of density matrices with a high quantum entanglement detection accuracy. This takes a step towards benchmarking quantum separability to support the development of more powerful entanglement detection techniques.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (36)
  1. Entanglement detection with artificial neural networks. Scientific Reports, 13(1):1562, 2023.
  2. Guillaume Aubrun. Is a random state entangled? In XVIIth International Congress on Mathematical Physics, pages 534–541, 2014.
  3. Entanglement thresholds for random induced states. Communications on Pure and Applied Mathematics, 67(1):129–171, 2014.
  4. Robustness of entangled states that are positive under partial transposition. Physical Review A, 77(3):032318, 2008.
  5. Optimal entanglement witnesses for qubits and qutrits. Physical Review A, 72(5):052331, 2005.
  6. Bloch vectors for qudits. Journal of Physics A: Mathematical and Theoretical, 41(23):235303, 2008.
  7. Detecting quantum entanglement with unsupervised learning. Quantum Science and Technology, 7(1):015005, 2021.
  8. A tensor product matrix approximation problem in quantum physics. Linear algebra and its applications, 420(2-3):711–725, 2007.
  9. Sevag Gharibian. Strong NP-hardness of the quantum separability problem. Quantum Info. Comput., 10(3):343–360, 2010.
  10. Building separable approximations for quantum states via neural networks. Physical Review Research, 4(2):023238, 2022.
  11. Entanglement detection. Physics Reports, 474(1-6):1–75, 2009.
  12. Leonid Gurvits. Classical deterministic complexity of edmonds’ problem and quantum entanglement. In Proceedings of the thirty-fifth annual ACM symposium on Theory of computing, pages 10–19, 2003.
  13. Largest separable balls around the maximally mixed bipartite quantum state. Physical Review A, 66(6):062311, 2002.
  14. Family of bound entangled states on the boundary of the Peres set. Physical Review A, 99(6):062329, 2019.
  15. Separability of mixed states: necessary and sufficient conditions. Phys. Lett. A, 223(1):1–8, 1996.
  16. Pawel Horodecki. Separability criterion and inseparable mixed states with positive partial transposition. Physics Letters A, 232(5):333–339, 1997.
  17. Quantum entanglement. Reviews of modern physics, 81(2):865, 2009.
  18. Lawrence M. Ioannou. Computational complexity of the quantum separability problem. Quantum Info. Comput., 7(4):335–370, 2007.
  19. Martin Jaggi. Revisiting frank-wolfe: Projection-free sparse convex optimization. In International conference on machine learning, pages 427–435, 2013.
  20. Nathaniel Johnston. Entanglement detection. Lecture note, University of Waterloo, 2014.
  21. Nathaniel Johnston. Qetlab: A matlab toolbox for quantum entanglement, version 0.9. Qetlab.com, 2016.
  22. Gen Kimura. The bloch vector for n-level systems. Physics Letters A, 314(5-6):339–349, 2003.
  23. Separability-entanglement classifier via machine learning. Physical Review A, 98(1):012315, 2018.
  24. Basic concepts of entangled states. In Entanglement and Decoherence, pages 61–86. Springer, 2009.
  25. Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, 2010.
  26. Scikit-learn: Machine learning in python. the Journal of machine Learning research, 12:2825–2830, 2011.
  27. Asher Peres. Separability criterion for density matrices. Physical Review Letters, 77(8):1413, 1996.
  28. Quantum computing: A gentle introduction. MIT Press, 2011.
  29. Accuracy of entanglement detection via artificial neural networks and human-designed entanglement witnesses. Physical Review Applied, 15(5):054006, 2021.
  30. Bipartite states of low rank are almost surely entangled. Journal of Physics A: Mathematical and Theoretical, 42(9):095303, 2009.
  31. Vincent Russo. toqito–theory of quantum information toolkit: A python package for studying quantum information. Journal of Open Source Software, 6(61):3082, 2021.
  32. Simple class of bound entangled states based on the properties of the antisymmetric subspace. Physical Review A, 97(3):032319, 2018.
  33. Entanglement detection with classical deep neural networks. arXiv preprint arXiv:2304.05946, 2023.
  34. Charles F. Van Loan. The ubiquitous kronecker product. Journal of computational and applied mathematics, 123(1-2):85–100, 2000.
  35. Volume of the set of separable states. Physical Review A, 58(2):883, 1998.
  36. Generating random density matrices. Journal of Mathematical Physics, 52(6):062201, 2011.

Summary

We haven't generated a summary for this paper yet.