Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the solvability of an indefinite nonlinear Kirchhoff equation via associated eigenvalue problems (1910.07687v1)

Published 17 Oct 2019 in math.AP

Abstract: We study the non-existence, existence and multiplicity of positive solutions to the following nonlinear Kirchhoff equation:% \begin{equation*} \left{ \begin{array}{l} -M\left( \int_{\mathbb{R}{3}}\left\vert \nabla u\right\vert {2}dx\right) \Delta u+\mu V\left( x\right) u=Q(x)\left\vert u\right\vert {p-2}u+\lambda f\left( x\right) u\text{ in }\mathbb{R}{N}, \ u\in H{1}\left( \mathbb{R}{N}\right) ,% \end{array}% \right. \end{equation*}% where $N\geq 3,2<p\<2^{\ast }:=\frac{2N}{N-2},M\left( t\right) =at+b$ $\left( a,b\>0\right) ,$ the potential $V$ is a nonnegative function in $\mathbb{R}% {N}$ and the weight function $Q\in L{\infty }\left( \mathbb{R}{N}\right) $ with changes sign in $\overline{\Omega }:=\left{ V=0\right} .$ We mainly prove the existence of at least two positive solutions in the cases that $% \left( i\right) $ $2<p<\min \left\{ 4,2^{\ast }\right\} $ and $0<\lambda <% \left[ 1-2\left[ \left( 4-p\right) /4\right] ^{2/p}\right] \lambda _{1}\left( f_{\Omega }\right) ;$ $\left( ii\right) $ $p\geq 4,\lambda \geq \lambda _{1}\left( f_{\Omega }\right) $ and near $\lambda _{1}\left( f_{\Omega }\right) $ for $\mu \>0$ sufficiently large, where $\lambda {1}\left( f{\Omega }\right) $ is the first eigenvalue of $-\Delta $ in $% H_{0}{1}\left( \Omega \right) $ with weight function $f_{\Omega }:=f|_{% \overline{\Omega }},$ whose corresponding positive principal eigenfunction is denoted by $\phi _{1}.$ Furthermore, we also investigated the non-existence and existence of positive solutions if $a,\lambda $ belongs to different intervals.

Summary

We haven't generated a summary for this paper yet.