Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Kirchhoff type equations in $\mathbb{R}^{N}$ (1908.01326v1)

Published 4 Aug 2019 in math.AP

Abstract: Consider a nonlinear Kirchhoff type equation as follows \begin{equation*} \left{ \begin{array}{ll} -\left( a\int_{\mathbb{R}{N}}|\nabla u|{2}dx+b\right) \Delta u+u=f(x)\left\vert u\right\vert {p-2}u & \text{ in }\mathbb{R}{N}, \ u\in H{1}(\mathbb{R}{N}), & \end{array}% \right. \end{equation*}% where $N\geq 1,a,b>0,2<p<\min \left{ 4,2{\ast }\right}$($2{\ast }=\infty $ for $N=1,2$ and $2{\ast }=2N/(N-2)$ for $N\geq 3)$ and the function $f\in C(\mathbb{R}{N})\cap L{\infty }(\mathbb{R}{N})$. Distinguishing from the existing results in the literature, we are more interested in the geometric properties of the energy functional related to the above problem. Furthermore, the nonexistence, existence, unique and multiplicity of positive solutions are proved dependent on the parameter $a$ and the dimension $N.$ In particular, we conclude that a unique positive solution exists for $1\leq N\leq4$ while at least two positive solutions are permitted for $N\geq5$.

Summary

We haven't generated a summary for this paper yet.