Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On indefinite Kirchhoff-type equations under the combined effect of linear and superlinear terms (2008.08497v1)

Published 19 Aug 2020 in math.AP

Abstract: We investigate a class of Kirchhoff type equations involving a combination of linear and superlinear terms as follows: \begin{equation*} -\left( a\int_{\mathbb{R}{N}}|\nabla u|{2}dx+1\right) \Delta u+\mu V(x)u=\lambda f(x)u+g(x)|u|{p-2}u\quad \text{ in }\mathbb{R}{N}, \end{equation*}% where $N\geq 3,2<p\<2^{\ast }:=\frac{2N}{N-2}$, $V\in C(\mathbb{R}^{N})$ is a potential well with the bottom $\Omega :=int\{x\in \mathbb{R}^{N}\ |\ V(x)=0\}$. When $N=3$ and $4<p\<6$, for each $a\>0$ and $\mu $ sufficiently large, we obtain that at least one positive solution exists for $% 0<\lambda\leq\lambda {1}(f{\Omega}) $ while at least two positive solutions exist for $\lambda {1}(f{\Omega })< \lambda<\lambda {1}(f{\Omega})+\delta_{a}$ without any assumption on the integral $% \int_{\Omega }g(x)\phi {1}{p}dx$, where $\lambda _{1}(f{\Omega })>0$ is the principal eigenvalue of $-\Delta $ in $H_{0}{1}(\Omega )$ with weight function $f_{\Omega }:=f|{\Omega }$, and $\phi _{1}>0$ is the corresponding principal eigenfunction. When $N\geq 3$ and $2<p<\min \{4,2^{\ast }\}$, for $% \mu $ sufficiently large, we conclude that $(i)$ at least two positive solutions exist for $a\>0$ small and $0<\lambda <\lambda _{1}(f{\Omega })$; $% (ii)$ under the classical assumption $\int_{\Omega }g(x)\phi {1}{p}dx<0$, at least three positive solutions exist for $a>0$ small and $\lambda _{1}(f{\Omega })\leq \lambda<\lambda {1}(f{\Omega})+\overline{\delta }% {a} $; $(iii)$ under the assumption $\int{\Omega }g(x)\phi {1}{p}dx>0$, at least two positive solutions exist for $a>a{0}(p)$ and $\lambda{+}_{a}< \lambda<\lambda {1}(f{\Omega})$ for some $a_{0}(p)>0$ and $\lambda{+}_{a}\geq0$.

Summary

We haven't generated a summary for this paper yet.