The effect of nonlocal term on the superlinear Kirchhoff type equations in $\mathbb{R}^{N}$ (1812.03037v1)
Abstract: We are concerned with a class of Kirchhoff type equations in $\mathbb{R}{N}$ as follows: \begin{equation*} \left{ \begin{array}{ll} -M\left( \int_{\mathbb{R}{N}}|\nabla u|{2}dx\right) \Delta u+\lambda V\left( x\right) u=f(x,u) & \text{in }\mathbb{R}{N}, \ u\in H{1}(\mathbb{R}{N}), & \end{array}% \right. \end{equation*}% where $N\geq 1,$ $\lambda>0$ is a parameter, $M(t)=am(t)+b$ with $a,b>0$ and $m\in C(\mathbb{R}{+},\mathbb{R}{+})$, $V\in C(\mathbb{R}{N},\mathbb{R}{+})$ and $f\in C(\mathbb{R}{N}\times \mathbb{R}, \mathbb{R})$ satisfying $\lim_{|u|\rightarrow \infty }f(x,u) /|u|{k-1}=q(x)$ uniformly in $x\in \mathbb{R}{N}$ for any $2<k<2{\ast}$($2{\ast}=\infty$ for $N=1,2$ and $2{\ast}=2N/(N-2)$ for $N\geq 3$). Unlike most other papers on this problem, we are more interested in the effects of the functions $m$ and $q$ on the number and behavior of solutions. By using minimax method as well as Caffarelli-Kohn-Nirenberg inequality, we obtain the existence and multiplicity of positive solutions for the above problem.