Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Critical growth fractional Kirchhoff elliptic problems (2203.06471v2)

Published 12 Mar 2022 in math.AP

Abstract: This article is concerned with the existence and multiplicity of positive weak solutions for the following fractional Kirchhoff-Choquard problem: \begin{equation*} \begin{array}{cc} \displaystyle M\left( |u|2\right) (-\Delta)s u = \ds\lambda f(x)|u|{q-2}u + \left( \int\limits_{\Omega} \frac{|u(y)|{2{*}_{\mu ,s}}}{|x-y|^ \mu}\, dy\right) |u|{2{*}_{\mu ,s}-2}u \;\text{in} \; \Omega, u > 0\quad \text{in} \; \Omega, \,\, u = 0\quad \text{in} \; \mathbb{R}{N}\backslash\Omega, \end{array} \end{equation*} where $\Omega$ is open bounded domain of $\mathbb{R}{N}$ with $C2$ boundary, $N > 2s$ and $s \in (0,1)$, here $M$ models Kirchhoff-type coefficient of the form $M(t) = a + bt{\te-1}$, where $a, b > 0$ are given constants. $(-\Delta)s$ is fractional Laplace operator, $\lambda > 0$ is a real parameter. We explore using the variational methods, the existence of solution for ${q} \in (1,2*_s)$ and $\te \geq 1$. % and we also consider the case when $\te > 2*_{\mu,s}$ for $2< q < 2*_{s}$. Here $2*_s = \frac{2N}{N-2s}$ and $2{*}_{\mu ,s} = \frac{2N-\mu}{N-2s}$ is the critical exponent in the sense of Hardy-Littlewood-Sobolev inequality.

Summary

We haven't generated a summary for this paper yet.