Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Universal, transferable and targeted adversarial attacks (1908.11332v4)

Published 29 Aug 2019 in cs.LG, cs.CV, and stat.ML

Abstract: Deep Neural Networks have been found vulnerable re-cently. A kind of well-designed inputs, which called adver-sarial examples, can lead the networks to make incorrectpredictions. Depending on the different scenarios, goalsand capabilities, the difficulties of the attacks are different.For example, a targeted attack is more difficult than a non-targeted attack, a universal attack is more difficult than anon-universal attack, a transferable attack is more difficultthan a nontransferable one. The question is: Is there existan attack that can meet all these requirements? In this pa-per, we answer this question by producing a kind of attacksunder these conditions. We learn a universal mapping tomap the sources to the adversarial examples. These exam-ples can fool classification networks to classify all of theminto one targeted class, and also have strong transferability.Our code is released at: xxxxx.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Junde Wu (118 papers)
  2. Rao Fu (28 papers)
Citations (10)

Summary

We haven't generated a summary for this paper yet.