Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Art-Attack: Black-Box Adversarial Attack via Evolutionary Art (2203.04405v1)

Published 7 Mar 2022 in cs.CR, cs.LG, and cs.NE

Abstract: Deep neural networks (DNNs) have achieved state-of-the-art performance in many tasks but have shown extreme vulnerabilities to attacks generated by adversarial examples. Many works go with a white-box attack that assumes total access to the targeted model including its architecture and gradients. A more realistic assumption is the black-box scenario where an attacker only has access to the targeted model by querying some input and observing its predicted class probabilities. Different from most prevalent black-box attacks that make use of substitute models or gradient estimation, this paper proposes a gradient-free attack by using a concept of evolutionary art to generate adversarial examples that iteratively evolves a set of overlapping transparent shapes. To evaluate the effectiveness of our proposed method, we attack three state-of-the-art image classification models trained on the CIFAR-10 dataset in a targeted manner. We conduct a parameter study outlining the impact the number and type of shapes have on the proposed attack's performance. In comparison to state-of-the-art black-box attacks, our attack is more effective at generating adversarial examples and achieves a higher attack success rate on all three baseline models.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Phoenix Williams (1 paper)
  2. Ke Li (723 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.