Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 162 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Proof of some conjectures involving quadratic residues (1907.12981v3)

Published 30 Jul 2019 in math.NT

Abstract: We confirm several conjectures of Sun involving quadratic residues modulo odd primes. For any prime $p\equiv 1\pmod 4$ and integer $a\not\equiv0\pmod p$, we prove that \begin{align*}&(-1){|{1\le k<\frac p4:\ (\frac kp)=-1}|}\prod_{1\le j<k\le(p-1)/2}(e^{2\pi iaj^2/p}+e^{2\pi iak^2/p}) \\=&\begin{cases}1&\text{if}\ p\equiv1\pmod 8,\\\left(\frac ap\right)\varepsilon_p^{-(\frac ap)h(p)}&\text{if}\ p\equiv5\pmod8,\end{cases} \end{align*} and that \begin{align*}&\left|\left\{(j,k):\ 1\le j<k\le\frac{p-1}2\ \&\ \{aj^2\}_p>{ak2}_p\right}\right| \&+\left|\left{(j,k):\ 1\le j<k\le\frac{p-1}2\ \&\ \{ak^2-aj^2\}_p>\frac p2\right}\right| \\equiv&\left|\left{1\le k<\frac p4:\ \left(\frac kp\right)=\left(\frac ap\right)\right}\right|\pmod2. \end{align*} where $(\frac{a}p)$ is the Legendre symbol, $\varepsilon_p$ and $h(p)$ are the fundamental unit and the class number of the real quadratic field $\mathbb Q(\sqrt p)$ respectively, and ${x}_p$ is the least nonnegative residue of an integer $x$ modulo $p$. Also, for any prime $p\equiv3\pmod4$ and $\delta=1,2$, we determine $$(-1){\left|\left{(j,k): \ 1\le j<k\le(p-1)/2\ \text{and}\ \{\delta T_j\}_p>{\delta T_k}_p\right}\right|},$$ where $T_m$ denotes the triangular number $m(m+1)/2$.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.