Papers
Topics
Authors
Recent
Search
2000 character limit reached

Proof of a recent conjecture of Z.-W. Sun

Published 18 Apr 2016 in math.NT and math.CO | (1604.05019v1)

Abstract: The polynomials $d_n(x)$ are defined by \begin{align*} d_n(x) &= \sum_{k=0}n{n\choose k}{x\choose k}2k. \end{align*} We prove that, for any prime $p$, the following congruences hold modulo $p$: \begin{align*} \sum_{k=0}{p-1}\frac{{2k\choose k}}{4k} d_k\left(-\frac{1}{4}\right)2 &\equiv \begin{cases} 2(-1){\frac{p-1}{4}}x,&\text{if $p=x2+y2$ with $x\equiv 1\pmod{4}$,} 0,&\text{if $p\equiv 3\pmod{4}$,} \end{cases} [5pt] \sum_{k=0}{p-1}\frac{{2k\choose k}}{4k} d_k\left(-\frac{1}{6}\right)2 &\equiv 0, \quad\text{if $p>3$,} [5pt] \sum_{k=0}{p-1}\frac{{2k\choose k}}{4k} d_k\left(\frac{1}{4}\right)2 &\equiv \begin{cases} 0,&\text{if $p\equiv 1\pmod{4}$,} (-1){\frac{p+1}{4}}{\frac{p-1}{2}\choose \frac{p-3}{4}},&\text{if $p\equiv 3\pmod{4}$.} \end{cases} \sum_{k=0}{p-1}\frac{{2k\choose k}}{4k} d_k\left(\frac{1}{6}\right)2 &\equiv 0, \quad\text{if $p>5$.} \end{align*} The $p\equiv 3\pmod{4}$ case of the first one confirms a conjecture of Z.-W. Sun, while the second one confirms a special case of another conjecture of Z.-W. Sun.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.