Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On a generalization of R. Chapman's "evil determinant" (2405.02112v1)

Published 3 May 2024 in math.NT

Abstract: Let $p$ be an odd prime and $x$ be an indeterminate. Recently, Z.-W. Sun proposed the following conjecture: $$\det\left[x+\left(\frac{j-i}{p}\right)\right]_{0\le i,j\le \frac{p-1}{2}}=\begin{cases} (\frac{2}{p})pb_px-a_p & \mbox{if}\ p\equiv 1\pmod4, 1 & \mbox{if}\ p\equiv 3\pmod4, \end{cases}$$ where $a_p$ and $b_p$ are rational numbers related to the fundamental unit and class number of the real quadratic field $\mathbb{Q}(\sqrt{p})$. In this paper, we confirm the above conjecture of Sun based on Vsemirnov's decomposition of Chapman's "evil determinant".

Citations (3)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com