Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Evolving Self-supervised Neural Networks: Autonomous Intelligence from Evolved Self-teaching (1906.08865v1)

Published 27 May 2019 in cs.NE and cs.AI

Abstract: This paper presents a technique called evolving self-supervised neural networks - neural networks that can teach themselves, intrinsically motivated, without external supervision or reward. The proposed method presents some sort-of paradigm shift, and differs greatly from both traditional gradient-based learning and evolutionary algorithms in that it combines the metaphor of evolution and learning, more specifically self-learning, together, rather than treating these phenomena alternatively. I simulate a multi-agent system in which neural networks are used to control autonomous foraging agents with little domain knowledge. Experimental results show that only evolved self-supervised agents can demonstrate some sort of intelligent behaviour, but not evolution or self-learning alone. Indications for future work on evolving intelligence are also presented.

Citations (1)

Summary

We haven't generated a summary for this paper yet.