Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Evolving Self-taught Neural Networks: The Baldwin Effect and the Emergence of Intelligence (1906.08854v1)

Published 4 Apr 2019 in cs.NE

Abstract: The so-called Baldwin Effect generally says how learning, as a form of ontogenetic adaptation, can influence the process of phylogenetic adaptation, or evolution. This idea has also been taken into computation in which evolution and learning are used as computational metaphors, including evolving neural networks. This paper presents a technique called evolving self-taught neural networks - neural networks that can teach themselves without external supervision or reward. The self-taught neural network is intrinsically motivated. Moreover, the self-taught neural network is the product of the interplay between evolution and learning. We simulate a multi-agent system in which neural networks are used to control autonomous agents. These agents have to forage for resources and compete for their own survival. Experimental results show that the interaction between evolution and the ability to teach oneself in self-taught neural networks outperform evolution and self-teaching alone. More specifically, the emergence of an intelligent foraging strategy is also demonstrated through that interaction. Indications for future work on evolving neural networks are also presented.

Citations (6)

Summary

We haven't generated a summary for this paper yet.