Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Grade prediction with course and student specific models (1906.00792v1)

Published 30 May 2019 in cs.CY

Abstract: The accurate estimation of students' grades in future courses is important as it can inform the selection of next term's courses and create personalized degree pathways to facilitate successful and timely graduation. This paper presents future-course grade predictions methods based on sparse linear models and low-rank matrix factorizations that are specific to each course or student-course tuple. These methods identify the predictive subsets of prior courses on a course-by-course basis and better address problems associated with the not-missing-at-random nature of the student-course historical grade data. The methods were evaluated on a dataset obtained from the University of Minnesota. This evaluation showed that the course-specific models outperformed various competing schemes with the best performing scheme achieving an RMSE across the different courses of 0.632 vs 0.661 for the best competing method.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Agoritsa Polyzou (5 papers)
  2. George Karypis (110 papers)
Citations (39)