Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Will this Course Increase or Decrease Your GPA? Towards Grade-aware Course Recommendation (1904.11798v1)

Published 22 Apr 2019 in cs.IR, cs.LG, and stat.ML

Abstract: In order to help undergraduate students towards successfully completing their degrees, developing tools that can assist students during the course selection process is a significant task in the education domain. The optimal set of courses for each student should include courses that help him/her graduate in a timely fashion and for which he/she is well-prepared for so as to get a good grade in. To this end, we propose two different grade-aware course recommendation approaches to recommend to each student his/her optimal set of courses. The first approach ranks the courses by using an objective function that differentiates between courses that are expected to increase or decrease a student's GPA. The second approach combines the grades predicted by grade prediction methods with the rankings produced by course recommendation methods to improve the final course rankings. To obtain the course rankings in the first approach, we adapt two widely-used representation learning techniques to learn the optimal temporal ordering between courses. Our experiments on a large dataset obtained from the University of Minnesota that includes students from 23 different majors show that the grade-aware course recommendation methods can do better on recommending more courses in which the students are expected to perform well and recommending fewer courses in which they are expected not to perform well in than grade-unaware course recommendation methods.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Sara Morsy (3 papers)
  2. George Karypis (110 papers)
Citations (19)