Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 231 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4 33 tok/s Pro
2000 character limit reached

Supercritical percolation on nonamenable graphs: Isoperimetry, analyticity, and exponential decay of the cluster size distribution (1904.10448v3)

Published 23 Apr 2019 in math.PR, math-ph, and math.MP

Abstract: Let $G$ be a connected, locally finite, transitive graph, and consider Bernoulli bond percolation on $G$. We prove that if $G$ is nonamenable and $p > p_c(G)$ then there exists a positive constant $c_p$ such that [\mathbf{P}_p(n \leq |K| < \infty) \leq e{-c_p n}] for every $n\geq 1$, where $K$ is the cluster of the origin. We deduce the following two corollaries: 1. Every infinite cluster in supercritical percolation on a transitive nonamenable graph has anchored expansion almost surely. This answers positively a question of Benjamini, Lyons, and Schramm (1997). 2. For transitive nonamenable graphs, various observables including the percolation probability, the truncated susceptibility, and the truncated two-point function are analytic functions of $p$ throughout the supercritical phase.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube