Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 98 tok/s Pro
Kimi K2 226 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

The $L^2$ boundedness condition in nonamenable percolation (1904.05804v2)

Published 11 Apr 2019 in math.PR

Abstract: Let $G=(V,E)$ be a connected, locally finite, transitive graph, and consider Bernoulli bond percolation on $G$. In recent work, we conjectured that if $G$ is nonamenable then the matrix of critical connection probabilities $T_{p_c}(u,v)=\mathbb{P}{p_c}(u\leftrightarrow v)$ is bounded as an operator $T{p_c}:L2(V)\to L2(V)$ and proved that this conjecture holds for several classes of graphs. We also noted in that work that the conjecture implies two older conjectures, namely that percolation on transitive nonamenable graphs always has a nontrivial nonuniqueness phase, and that critical percolation on the same class of graphs has mean-field critical behaviour. In this paper we further investigate the consequences of the $L2$ boundedness conjecture. In particular, we prove that the following hold for all transitive graphs: i) The two-point function decays exponentially in the distance for all $p<p_{2\to 2}$; ii) If $p_c<p_{2\to 2}$, then the critical exponent governing the extrinsic diameter of a critical cluster is $1$; iii) Below $p_{2\to 2}$, percolation is "ballistic" in the sense that the intrinsic distance between two points is exponentially unlikely to be much larger than their extrinsic distance; iv) If $p_c<p_{2\to 2}$, then $|T_{p_c}|{q\to q} \asymp (q-1){-1}$ and $p{q\to q}-p_c \asymp q-1$ as $q\downarrow 1$. v) If $p_c<p_{2\to 2}$, then various 'multiple-arm' events have probabilities comparable to the upper bound given by the BK inequality. In particular, the probability that the origin is a trifurcation point is of order $(p-p_c)3$ as $p \downarrow p_c$. All of these results are new even in the Gromov hyperbolic case. Finally, we apply these results together with duality arguments to compute the critical exponents governing the geometry of intrinsic geodesics at the uniqueness threshold of percolation in the hyperbolic plane.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)