Finite-energy infinite clusters without anchored expansion (2011.01377v2)
Abstract: Hermon and Hutchcroft have recently proved the long-standing conjecture that in Bernoulli(p) bond percolation on any nonamenable transitive graph G, at any p > p_c(G), the probability that the cluster of the origin is finite but has a large volume n decays exponentially in n. A corollary is that all infinite clusters have anchored expansion almost surely. They have asked if these results could hold more generally, for any finite energy ergodic invariant percolation. We give a counterexample, an invariant percolation on the 4-regular tree.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.