Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 98 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 165 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 29 tok/s Pro
2000 character limit reached

On the Mumford-Tate conjecture for hyperkähler varieties (1904.06238v3)

Published 12 Apr 2019 in math.AG

Abstract: We study the Mumford--Tate conjecture for hyperk\"{a}hler varieties. We show that the full conjecture holds for all varieties deformation equivalent to either an Hilbert scheme of points on a K3 surface or to O'Grady's ten dimensional example, and all of their self-products. For an arbitrary hyperk\"{a}hler variety whose second Betti number is not 3, we prove the Mumford--Tate conjecture in every codimension under the assumption that the K\"{u}nneth components in even degree of its Andr\'{e} motive are abelian. Our results extend a theorem of Andr\'{e}.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.