Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 98 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 165 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 29 tok/s Pro
2000 character limit reached

The Mumford--Tate conjecture for products of abelian varieties (1804.06840v1)

Published 18 Apr 2018 in math.AG

Abstract: Let $X$ be a smooth projective variety over a finitely generated field $K$ of characteristic~$0$ and fix an embedding $K \subset \mathbb{C}$. The Mumford--Tate conjecture is a precise way of saying that certain extra structure on the $\ell$-adic \'etale cohomology groups of~$X$ (namely, a Galois representation) and certain extra structure on the singular cohomology groups of~$X$ (namely, a Hodge structure) convey the same information. The main result of this paper says that if $A_1$ and~$A_2$ are abelian varieties (or abelian motives) over~$K$, and the Mumford--Tate conjecture holds for both~$A_1$ and~$A_2$, then it holds for $A_1 \times A_2$. These results do not depend on the embedding $K \subset \CC$.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.