Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Subdiagonal algebras with the Beurling type invariant subspaces (1904.01746v1)

Published 3 Apr 2019 in math.OA and math.FA

Abstract: Let $\mathfrak A$ be a maximal subdiagonal algebra in a $\sigma$-finite von Neumann algebra $\mathcal M$. If every right invariant subspace of $\mathfrak A$ in the non-commutative Hardy space $H2$ is of Beurling type, then we say $\mathfrak A$ to be type 1. We determine generators of these algebras and consider a Riesz type factorization theorem for the non-commutative $H1$ space. We show that the right analytic Toeplitz algebra on the non-commutative Hardy space $Hp$ associated with a type 1 subdiagonal algebra with multiplicity 1 is hereditary reflexive.

Summary

We haven't generated a summary for this paper yet.