2000 character limit reached
A Beurling-Blecher-Labuschagne theorem for Haagerup noncommutative $L^p$ spaces (1906.00841v2)
Published 3 Jun 2019 in math.OA
Abstract: Let $\mathcal{M}$ be a $\sigma$-finite von Neumann algebra, equipped with a normal faithful state $\varphi$, and let $\mathcal{A}$ be maximal subdiagonal subalgebra of $\mathcal{M}$ and $1\le p<\8$. We prove a Beurling-Blecher-Labuschagne type theorem for $\mathcal{A}$-invariant subspaces of Haagerup noncommutative $Lp(\mathcal{M})$ and give a characterization of outer operators in Haagerup noncommutative $H{p}$-spaces associated with $\mathcal{A}$.