Equivalence of regression curves sharing common parameters (1902.03456v1)
Abstract: In clinical trials the comparison of two different populations is a frequently addressed problem. Non-linear (parametric) regression models are commonly used to describe the relationship between covariates as the dose and a response variable in the two groups. In some situations it is reasonable to assume some model parameters to be the same, for instance the placebo effect or the maximum treatment effect. In this paper we develop a (parametric) bootstrap test to establish the similarity of two regression curves sharing some common parameters. We show by theoretical arguments and by means of a simulation study that the new test controls its level and achieves a reasonable power. Moreover, it is demonstrated that under the assumption of common parameters a considerable more powerful test can be constructed compared to the test which does not use this assumption. Finally, we illustrate potential applications of the new methodology by a clinical trial example.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.