Papers
Topics
Authors
Recent
2000 character limit reached

An Empirical Comparison of Parametric and Permutation Tests for Regression Analysis of Randomized Experiments (1702.04851v2)

Published 16 Feb 2017 in stat.AP

Abstract: Hypothesis tests based on linear models are widely accepted by organizations that regulate clinical trials. These tests are derived using strong assumptions about the data-generating process so that the resulting inference can be based on parametric distributions. Because these methods are well understood and robust, they are sometimes applied to data that depart from assumptions, such as ordinal integer scores. Permutation tests are a nonparametric alternative that require minimal assumptions which are often guaranteed by the randomization that was conducted. We compare analysis of covariance (ANCOVA), a special case of linear regression that incorporates stratification, to several permutation tests based on linear models that control for pretreatment covariates. In simulations of randomized experiments using models which violate some of the parametric regression assumptions, the permutation tests maintain power comparable to ANCOVA. We illustrate the use of these permutation tests alongside ANCOVA using data from a clinical trial comparing the effectiveness of two treatments for gastroesophageal reflux disease. Given the considerable costs and scientific importance of clinical trials, an additional nonparametric method, such as a linear model permutation test, may serve as a robustness check on the statistical inference for the main study endpoints.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.