Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 98 tok/s Pro
Kimi K2 226 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

The random walk penalised by its range in dimensions $d\geq 3$ (1811.04700v2)

Published 12 Nov 2018 in math.PR

Abstract: We study a self-attractive random walk such that each trajectory of length $N$ is penalised by a factor proportional to $\exp ( - |R_N|)$, where $R_N$ is the set of sites visited by the walk. We show that the range of such a walk is close to a solid Euclidean ball of radius approximately $\rho_d N{1/(d+2)}$, for some explicit constant $\rho_d >0$. This proves a conjecture of Bolthausen who obtained this result in the case $d=2$.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.