The range of tree-indexed random walk in low dimensions
Abstract: We study the range $R_n$ of a random walk on the $d$-dimensional lattice $\mathbb{Z}d$ indexed by a random tree with $n$ vertices. Under the assumption that the random walk is centered and has finite fourth moments, we prove in dimension $d\leq3$ that $n{-d/4}R_n$ converges in distribution to the Lebesgue measure of the support of the integrated super-Brownian excursion (ISE). An auxiliary result shows that the suitably rescaled local times of the tree-indexed random walk converge in distribution to the density process of ISE. We obtain similar results for the range of critical branching random walk in $\mathbb{Z}d$, $d\leq3$. As an intermediate estimate, we get exact asymptotics for the probability that a critical branching random walk starting with a single particle at the origin hits a distant point. The results of the present article complement those derived in higher dimensions in our earlier work.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.