Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Double exponential sums and congruences with intervals and exponential functions modulo a prime (1810.06341v1)

Published 15 Oct 2018 in math.NT

Abstract: Let $p$ be a large prime number and $g$ be any integer of multiplicative order $T$ modulo $p$. We obtain a new estimate of the double exponential sum $$ S=\sum_{n\in \mathcal{N}}\left|\sum_{m\in \mathcal{M} }e_p(an g{m})\right|, \quad \gcd (a,p)=1, $$ where $\mathcal{N}$ and $\mathcal{M}$ are intervals of consecutive integers with $|\mathcal{N}|=N$ and $|\mathcal{M}|=M<T$ elements. One representative example is the following consequence of the main result: if $N=M\approx p{1/3}$, then $|S|< N{2-1/8 + o(1)}$. We then apply our estimate to obtain new results on additive congruences involving intervals and exponential functions.

Summary

We haven't generated a summary for this paper yet.