Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

New estimates for exponential sums over multiplicative subgroups and intervals in prime fields (2003.06165v1)

Published 13 Mar 2020 in math.NT

Abstract: Let ${\mathcal H}$ be a multiplicative subgroup of $\mathbb{F}p*$ of order $H>p{1/4}$. We show that $$ \max{(a,p)=1}\left|\sum_{x\in {\mathcal H}} {\mathbf{\,e}}_p(ax)\right| \le H{1-31/2880+o(1)}, $$ where ${\mathbf{\,e}}_p(z) = \exp(2 \pi i z/p)$, which improves a result of Bourgain and Garaev (2009). We also obtain new estimates for double exponential sums with product $nx$ with $x \in {\mathcal H}$ and $n \in {\mathcal N}$ for a short interval ${\mathcal N}$ of consecutive integers.

Summary

We haven't generated a summary for this paper yet.