Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Inference for Volatility Functionals of Multivariate Itô Semimartingales Observed with Jump and Noise (1810.04725v2)

Published 10 Oct 2018 in math.ST, q-fin.ST, stat.ME, and stat.TH

Abstract: This paper presents the nonparametric inference for nonlinear volatility functionals of general multivariate It^o semimartingales, in high-frequency and noisy setting. Pre-averaging and truncation enable simultaneous handling of noise and jumps. Second-order expansion reveals explicit biases and a pathway to bias correction. Estimators based on this framework achieve the optimal convergence rate. A class of stable central limit theorems are attained with estimable asymptotic covariance matrices. This paper form a basis for infill asymptotic results of, for example, the realized Laplace transform, the realized principal component analysis, the continuous-time linear regression, and the generalized method of integrated moments, hence helps to extend the application scopes to more frequently sampled noisy data.

Summary

We haven't generated a summary for this paper yet.