Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient Integrated Volatility Estimation in the Presence of Infinite Variation Jumps via Debiased Truncated Realized Variations (2209.10128v3)

Published 21 Sep 2022 in econ.EM, math.ST, q-fin.ST, and stat.TH

Abstract: Statistical inference for stochastic processes based on high-frequency observations has been an active research area for more than two decades. One of the most well-known and widely studied problems has been the estimation of the quadratic variation of the continuous component of an It^o semimartingale with jumps. Several rate- and variance-efficient estimators have been proposed in the literature when the jump component is of bounded variation. However, to date, very few methods can deal with jumps of unbounded variation. By developing new high-order expansions of the truncated moments of a locally stable L\'evy process, we propose a new rate- and variance-efficient volatility estimator for a class of It^o semimartingales whose jumps behave locally like those of a stable L\'evy process with Blumenthal-Getoor index $Y\in (1,8/5)$ (hence, of unbounded variation). The proposed method is based on a two-step debiasing procedure for the truncated realized quadratic variation of the process and can also cover the case $Y<1$. Our Monte Carlo experiments indicate that the method outperforms other efficient alternatives in the literature in the setting covered by our theoretical framework.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com