Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Existence of Stein Kernels under a Spectral Gap, and Discrepancy Bound (1703.07707v2)

Published 22 Mar 2017 in math.PR, cs.IT, math.FA, and math.IT

Abstract: We establish existence of Stein kernels for probability measures on $\mathbb{R}d$ satisfying a Poincar\'e inequality, and obtain bounds on the Stein discrepancy of such measures. Applications to quantitative central limit theorems are discussed, including a new CLT in Wasserstein distance $W_2$ with optimal rate and dependence on the dimension. As a byproduct, we obtain a stability version of an estimate of the Poincar\'e constant of probability measures under a second moment constraint. The results extend more generally to the setting of converse weighted Poincar\'e inequalities. The proof is based on simple arguments of calculus of variations. Further, we establish two general properties enjoyed by the Stein discrepancy, holding whenever a Stein kernel exists: Stein discrepancy is strictly decreasing along the CLT, and it controls the skewness of a random vector.

Citations (67)

Summary

We haven't generated a summary for this paper yet.