Papers
Topics
Authors
Recent
2000 character limit reached

The universal approximation power of finite-width deep ReLU networks

Published 5 Jun 2018 in cs.LG and stat.ML | (1806.01528v1)

Abstract: We show that finite-width deep ReLU neural networks yield rate-distortion optimal approximation (B\"olcskei et al., 2018) of polynomials, windowed sinusoidal functions, one-dimensional oscillatory textures, and the Weierstrass function, a fractal function which is continuous but nowhere differentiable. Together with their recently established universal approximation property of affine function systems (B\"olcskei et al., 2018), this shows that deep neural networks approximate vastly different signal structures generated by the affine group, the Weyl-Heisenberg group, or through warping, and even certain fractals, all with approximation error decaying exponentially in the number of neurons. We also prove that in the approximation of sufficiently smooth functions finite-width deep networks require strictly smaller connectivity than finite-depth wide networks.

Citations (36)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.