Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Expressive Power of Neural Networks (2306.00145v1)

Published 31 May 2023 in math.CA, cs.AI, cs.LG, and stat.ML

Abstract: In 1989 George Cybenko proved in a landmark paper that wide shallow neural networks can approximate arbitrary continuous functions on a compact set. This universal approximation theorem sparked a lot of follow-up research. Shen, Yang and Zhang determined optimal approximation rates for ReLU-networks in $Lp$-norms with $p \in [1,\infty)$. Kidger and Lyons proved a universal approximation theorem for deep narrow ReLU-networks. Telgarsky gave an example of a deep narrow ReLU-network that cannot be approximated by a wide shallow ReLU-network unless it has exponentially many neurons. However, there are even more questions that still remain unresolved. Are there any wide shallow ReLU-networks that cannot be approximated well by deep narrow ReLU-networks? Is the universal approximation theorem still true for other norms like the Sobolev norm $W{1,1}$? Do these results hold for activation functions other than ReLU? We will answer all of those questions and more with a framework of two expressive powers. The first one is well-known and counts the maximal number of linear regions of a function calculated by a ReLU-network. We will improve the best known bounds for this expressive power. The second one is entirely new.

Citations (1)

Summary

We haven't generated a summary for this paper yet.