Papers
Topics
Authors
Recent
Search
2000 character limit reached

Survey on the Bell nonlocality of a pair of entangled qudits

Published 23 May 2018 in quant-ph | (1805.09451v1)

Abstract: The question of how Bell nonlocality behaves in bipartite systems of higher dimensions is addressed. By employing the probability of violation of local realism under random measurements as the figure of merit, we investigate the nonlocality of entangled qudits with dimensions ranging from $d=2$ to $d=7$. We proceed in two complementary directions. First, we study the specific Bell scenario defined by the Collins-Gisin-Linden-Massar-Popescu (CGLMP) inequality. Second, we consider the nonlocality of the same states under a more general perspective, by directly addressing the space of joint probabilities (computing the frequencies of behaviours outside the local polytope). In both approaches we find that the nonlocality decreases as the dimension $d$ grows, but in quite distinct ways. While the drop in the probability of violation is exponential in the CGLMP scenario, it presents, at most, a linear decay in the space of behaviours. Furthermore, in both cases the states that produce maximal numeric violations in the CGLMP inequality present low probabilities of violation in comparison with maximally entangled states, so, no anomaly is observed. Finally, the nonlocality of states with non-maximal Schmidt rank is investigated.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.